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AbstractThis investigation deals with the performance of Magnetic fluid based squeeze film in rough curved circular plates with 

various porous structures. The globular sphere model due to Kozeny – Carman and capillary fissures model of Irmay for porous 

structure have been subjected to investigations. The external magnetic field is considered to be oblique to the lower plate. Christenson 

and Tonder’s model has been adopted to account for roughness. The associated statistically averaged generalized Reynolds’ equation 

is solved for pressure distribution leading to the estimation of load carrying capacity. Results presented in graphical form show that 

the load carrying capacity increases with increasing values of magnetization parameter. Although, the effect of transverse roughness 

is in general, adverse there exists enough scope to minimize this adverse effect by the magnetic fluid lubrication at least in the case of 

Kozeny – Carman porous structure. Besides, the bearing records more load in the case of Kozeny – Carman porous structure as 

compared to the porous structure of Irmay 
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I. INTRODUCTION 

 During the last decades the use of magnetic nano particles in the various engineering systems has attracted researchers 

all over the world. In fact, ferrofluids or magnetic fluids are stable colloidal suspension, consisting of ferromagnetic nano 

particles dispersed in a carrier liquid, while a surfactant is added to generate a coating layer preventing the flocculation of 

the particles. Ferrofluids experience body forces when an external magnetic field is applied and move through liquid 

imparting drag to it causing it flow. In addition, in magnetic gradient fields these fluids exhibit increased viscosity. Besides, 

ferrofluids undergo practically no ageing or separation. They remain liquid in a magnetic field and after removal of field 

recover their characteristics. Because of the above properties magnetic fluids are found to be useful in space ships which 

often travel in zero gravity regions. The advantage of magnetic fluid lubricant over the conventional ones is that the former 

can be retained at a desired location by an external magnetic field. Therefore, these fluids are used in sealed systems as in 

food preparation machines. In the area of medicine magnetic fluid based actuators are being developed for implanting 

artificial hearts which are driven by external magnetic fields. It is also well known that ferrofluid based viscous dampers are 

used in lens grading and robotics. [1 – 3] 

 The investigation carried out by Agrawal [4] regarding the effect of magnetic fluid on the performance of a porous 

inclined slider bearing indicated that the magnetization of the magnetic particles in the lubricant increased the load carrying 

capacity without changing the friction in the moving slider. Later on, Verma [5] dealt with the squeeze film behavior 

between porous plates and found that its performance with magnetic field was relatively better than conventional lubricants. 

 The squeeze film performance based on magnetic fluid lubrication in curved porous rotating circular plates was studied 

by Shah and Bhat [6]. It was shown that the curvature parameter significantly affected the bearing performance although; 

the magnetic strength was in force.  
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The magnetic fluid lubrication of a squeeze film between porous rotating circular plates was considered by Patel et. al. [7]. It 

was found that negative effect of porosity could be reduced by the positive effect of magnetization when variance negative 

occurred. The squeeze film performance in transversely rough annular plates under the presence of a magnetic fluid 

lubricant was discussed by Patel et. al. [8]. It was shown that the negatively skewed roughness turned in a relatively better 

performance. The performance of a magnetic fluid based squeeze film between transversely rough curved annular plates was 

improved by Deheri et. al. [9] by adopting a comparative study of the geometrical structures of the curved annular plates. 

 The analysis of squeeze film performance between curved annular plates with an electrically conducting fluid in the 

presence of a transverse magnetic field was presented by Lin et. al. [10]. According to the results obtained, the use of 

applied magnetic field registered an increase in the magneto hydrodynamic squeeze film pressure as compared to the case of 

non-conducting lubricant. The magnetic field effect characterized by the Hartmann number provided an enhancement to the 

load carrying capacity and response time especially for larger values of the curved shape parameter or the smaller values of 

the aspect ratio. 

 Here it has been sought to compare the effect of different porous structures on the performance of a ferrofluid based 

squeeze film in rough curved porous circular  

ANALYSIS 

The configuration of the bearing system is shown in Figure – I, which consists of two circular plates each of radius a. 

The upper plate has a porous facing of thickness l1 which is backed by a solid wall. It moves normally towards an impermeable 

and flat lower plate with uniform velocity
dt

dh
h 0

0 
 . 

The bearing surfaces are assumed to be transversely rough. Following the discussions of Christensen and Tonder [14 – 

16] the geometry of the local film thickness can be thought of as consisting of two parts: 

h(x) = h(x) + hs(x) 

where h(x) is the mean film thickness and hs(x) is the deviation from the mean film thickness characterizing the random 

roughness of the bearing surfaces. hs(x) is considered to be stochastic in nature and governed by the probability density function 

f (hs),  - c  hs  c where  c is the maximum deviation from the mean film thickness. The mean , the standard deviation  and 

the parameter  which is the measure of symmetry of random variable hs, are governed by the relations 

 = E (hs) 

2 = E [ (hs -  )2 ] 

and 

 = E [ (hs -  )3 ] 

where the expectancy operator E is defined by 

E (R) = 


c

c
s)dhsRf(h  

while 









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elsewhere0,

cshc,3)2
sh2(c

732c

35

)sf(h  

Assuming axially symmetric flow of the ferrofluid between the plates under an oblique magnetic field H = (H(r)cos, 

0,  H(r)sin) whose magnitude H vanishes at r = 0 and r = a, the modified Reynolds’ equation governing the fluid film pressure 

p is [11 – 13] 

 0h12η2Hμ00.5μp
dr

d
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d
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             …(1) 

where H2 = Kr2(a – r)/a, K = 1014 – 1016 A2m–4 is chosen as to have a magnetic field of strength between the order 105 to 106.  

is the permeability of the porous region, 0 is the permeability of the free space, is the magnetic susceptibility and  is the 

fluid viscosity. 

 Because of the fact that the magnetic field comes out of a potential, the angle of inclination  = (r, z) can be 

determined from 
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with the help of elliptic integrals depending on the value of a. 

Case – I (a globular sphere model as shown in Figure – II). In this model the globular particles fill the porous material. The 

mean particle size is Dc. 

In view of Kozney – Carman formulation [3] one finds that the permeability of the porous region takes the form 

 
2e)180(1

3e2
cD

ψ


           … (3) 

where e is the porosity. 

Integrating the above equation (1) with respect to the boundary conditions 

 0
dr

dp
 ,r = 0; p = 0, r = a         … (4) 

one gets the expression for pressure distribution as 

 



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
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 2a2r

112ψε3αα23σ23hαα23hh23σ3h

0h3η2Hμ00.5μp
l


  … (5) 

Introducing the non dimensional quantities   
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and  

 g(h ) = 1 + 3*2 + 3* + 3*2 + 3*2* + *3 + *       … (6) 

the nondimensional pressure can be had from   

  

2e)15(1
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The load carrying capacity of the bearing in non-dimensional form can be expressed as 
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The response time  tΔ  taken by the upper plate to reach a film thickness 
2

h  from an initial film thickness 
1

h  can be 

determined in dimensionless form as  
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Case – II (a capillary fisher’s model as shown in figure – III). This model comprises of three sets of mutually orthogonal fishers 

(mean solid size Ds). No loss of hydraulic gradient at the junctions was assumed by Irmay [17] who obtained the expression for 

the permeability as  
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where m = 1  e, e being the porosity. 

 Solving equation (1) under the boundary conditions (4), in view of the dimensionless quantities (6) the expression for 

non-dimensional pressure distribution is found to be 
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where 
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Then the governing expression for nondimensional form of load carrying capacity of the bearing is derived as 
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Lastly, the response time  tΔ  taken by the upper plate to reach a film thickness 
2

h  from an initial film thickness 
1

h  can be 

determined in dimensionless form as  
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RESULTS AND DISCUSSIONS 

It is seen from Equations 7 and 11 that the non-dimensional pressure increases by  while the enhancement in dimensionless load 

carrying capacity is   as indicated by equations 8 and 13 due to magnetization, as compared to the case of traditional lubricant. 

At least the load carrying capacity increases by 1.3 % owing to magnetic fluid lubrication. Probably, this may be due to the fact 

that the effective viscosity of the lubricant gets increased due to magnetization resulting in increased pressure. In the case of 

bearings with smooth surfaces this study reduces to the effect of various porous structures on the performance of a magnetic 

fluid based squeeze film. Further, setting the magnetization parameter to be zero, one obtains the effect of various porous 

structures on the circular squeeze film.  
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 Figures (1–15) deal with the variation of load carrying capacity with respect to various parameters for globular sphere 

model of Kozeny Carman, while the distribution of load carrying capacity with respect to the capillary fisher’s model of Irmay 

is presented in Figures (16–30). It can be observed from equations 8 and 13 that the expression is linear with respect to the 

–5) 

and (16–20), It is easily observed that the load carrying capacity increases significantly in the case of Kozeny Carman model as 

compared to Irmay’s model. Further the effect of porosity and skewness on the distribution of load carrying capacity with 

gligible in the case of globular sphere model. 

 The effect of standard deviation on the variation of load carrying capacity with respect to Kozeny Carman model is 

given in Figures (6–9) while Figures (21–24) show the profile of load carrying capacity with respect to the standard deviation in 

the case of Irmay’s model. It is noticed that the increase in the values of standard deviation causes decreased load carrying 

capacity as a result of which the standard deviation introduces an adverse effect on the squeeze film performance. Figures (8), 

(9) make it clear that in the case of Kozeny Carman model the effect of porosity and skewness on the distribution of load 

carrying capacity with respect of standard deviation is negligible, while Figure (24) informs that the effect of skewness on the 

load profile with respect to the standard deviation is not that significant. 

 The effect of variance on the distribution of load carrying capacity with respect to Kozeny Carman model and Irmay’s 

model are supplied in Figures (10–12) and Figures (25–27) respectively. It is observed that the positive variance decreases the 

load carrying capacity for both the models while the load carrying capacity gets increased due to variance (–ve). It is interesting 

to find that the effect of porosity and skewness on the distribution of load carrying capacity with respect to variance is almost 

negligible for both the models. The effect of skewness presented in Figures 13, 14, 28 and 29 ensures that the trends of load 

carrying capacity with respect to skewness are alike to that of variance. Therefore, the combined effect of negatively skewed 

roughness and variance (–

e on the distribution of load carrying capacity with respect to skewness is negligible while the effect of e on the variation of load 

carrying capacity with respect to skewness is not that significant in the case of Irmay’s model. Lastly, the combined effect 

and e is considerably adverse as can be seen from Figures 15 and 30.  

 A close look at the figures reveals that the negative effect of porosity can be minimized to a large extent by the positive 

effect of magnetization in the case of negatively skewed roughness with regards to globular sphere model. However, it is 

manifest that the variance plays a central role for a relatively better performance in the case of Irmay’s model. 

II. CONCLUSION 

 This study indicates that the Kozeny Carman model may be more suitable for this type of bearing systems. The 

roughness must be given due consideration while designing the bearing system even if suitable magnetic strength is in force. 

Lastly, the bearing system supports certain amount of load in the absence of flow for both the models which is very unlikely in 

the case of conventional lubricants. 
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Figure – I Configuration of the bearing system 

 

 
 

Figure – II Structure model of porous sheets given by Kozeny – Carman 

 

 
 

Figure – III Structure model of porous sheets given by Irmay 
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Figure: 1 Variation of load carrying capacity with respect to * and . 

 
Figure: 2 Variation of load carrying capacity with respect to * and . 

 
Figure: 3 Variation of load carrying capacity with respect to * and . 

 
Figure: 4 Variation of load carrying capacity with respect to * and . 
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Figure: 5 Variation of load carrying capacity with respect to * and e. 
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Figure: 6 Variation of load carrying capacity with respect to  and . 

 
Figure: 7 Variation of load carrying capacity with respect to  and . 

 
Figure: 8 Variation of load carrying capacity with respect to  and . 
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Figure: 9 Variation of load carrying capacity with respect to  and e. 
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Figure: 10 Variation of load carrying capacity with respect to  and . 

 
Figure: 11 Variation of load carrying capacity with respect to  and . 

 
Figure: 12 Variation of load carrying capacity with respect to  and e. 
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Figure: 13 Variation of load carrying capacity with respect to  and . 

 
Figure: 14 Variation of load carrying capacity with respect to  and e. 
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Figure: 15 Variation of load carrying capacity with respect to  and e. 
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Figure: 16 Variation of load carrying capacity with respect to * and . 
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Figure: 17 Variation of load carrying capacity with respect to * and . 

 
Figure: 18 Variation of load carrying capacity with respect to * and . 

 
Figure: 19 Variation of load carrying capacity with respect to * and . 

 
Figure: 20 Variation of load carrying capacity with respect to * and e. 
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Figure: 21 Variation of load carrying capacity with respect to  and . 

 
Figure: 22 Variation of load carrying capacity with respect to  and . 

 
Figure: 23 Variation of load carrying capacity with respect to  and . 

 
Figure: 24 Variation of load carrying capacity with respect to  and e. 
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Figure: 25 Variation of load carrying capacity with respect to  and . 

 
Figure: 26 Variation of load carrying capacity with respect to  and . 

 
Figure: 27 Variation of load carrying capacity with respect to  and e. 
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Figure: 28 Variation of load carrying capacity with respect to  and . 
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Figure: 29 Variation of load carrying capacity with respect to  and e. 
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Figure: 30 Variation of load carrying capacity with respect to  and e. 
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